Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
1.
Biomolecules ; 14(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38540771

RESUMO

ß-cyclodextrin (ß-CD) is a good host for the encapsulation of fennel and basil essential oils (FEO and BEO, respectively) and the formation of inclusion complexes (ICs) using the co-precipitation method. According to the results of the GC/MS analysis conducted in this study, monoterpenes and monoterpenoids were the dominant chemical groups in total FEO, while in BEO, these two groups occurred along with sesquiterpenes and sesquiterpenoids. The presence of dominant compounds from both EOs was validated using the FT-IR spectra of ICs, which indicated successful complexation. Analyses conducted using SPME/GC-MS showed the continuous emission of volatiles over 24 h from both ICs. Under SEM, particles of both ICs appeared to have a rectangular or rhomboid morphology and few aggregates. The insecticidal properties of EOs and ICs with ß-CD were tested on the Colorado potato beetle (CPB) as a model pest. The inclusion complex of ß-CD with FEO altered the developmental dynamic and body mass of the CPB. The initial increase in the proteolytic activity of CPB larvae fed with potato plants sprayed with ICs was not maintained for long, and the proteolytic efficacy of treated larvae remained in line with that of the control larvae. Future investigations will focus on manipulating the volume of EOs used and the treatment duration for optimal efficacy and potential application.


Assuntos
Foeniculum , Ocimum basilicum , Óleos Voláteis , Sesquiterpenos , beta-Ciclodextrinas , Óleos Voláteis/química , Ocimum basilicum/química , Agentes de Controle Biológico , Espectroscopia de Infravermelho com Transformada de Fourier , beta-Ciclodextrinas/química , Monoterpenos , Sesquiterpenos/farmacologia
2.
Molecules ; 29(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38398652

RESUMO

The objective of this study is to determine the effect of endogenous plant matrix components, dose and digestion-related factors on the bioaccessibility of rosmarinic acid and basil co-compounds in in vitro digestion conditions. Different forms of administration, i.e., basil raw plant material, dry extract, and isolated rosmarinic acid at various doses, were applied for the digestion experiment. To evaluate the contribution of biochemical and physicochemical digestion factors, samples were subjected to a full digestion process or treated only with a digestion fluid electrolyte composition without using biochemical components (i.e., digestion enzymes and bile salts), and bioaccessibility was monitored at the gastric and intestinal steps of digestion. The results showed that the components of the endogenous raw plant matrix significantly limited the bioaccessibility of rosmarinic acid and basil co-compounds, especially at the gastric stage of digestion. Physicochemical digestion factors were mainly responsible for the bioaccessibility of basil phytochemicals. Higher doses allowed maintenance of bioaccessibility at a relatively similar level, whereas the most negative changes in bioaccessibility were induced by the lowest doses. In conclusion, the determination of the bioaccessibility of bioactive phytochemicals from basil and factors influencing bioaccessibility may help in better prediction of the pro-health potential of this plant.


Assuntos
Ocimum basilicum , 60556 , Ocimum basilicum/química , Antioxidantes , Digestão
3.
J Sci Food Agric ; 104(3): 1609-1620, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37831476

RESUMO

BACKGROUND: Despite the optimal characteristics of peat, more environmental-friendly materials are needed in the nursery sector, although these must guarantee specific quantitative and qualitative commercial standards. In the present study, we evaluated the influence of biochar and compost as peat surrogates on yield and essential oil profile of two different varieties of basil (Ocimum basilicum var. Italiano and Ocimum basilicum var. minimum). In two 50-day pot experiments, we checked the performances of biochar from pruning of urban trees and composted kitchen scraps, both mixed in different proportions with commercial peat (first experiment), and under different nitrogen (N) fertilization regimes (second experiment), in terms of plant growth and volatile compounds profile of basil. RESULTS: Total or high substitution of peat with biochar (100% and 50% v.v.) or compost (100%) resulted in seedling death a few days from transplantation, probably because the pH and electrical conductivity of the growing media were too high. Substrates with lower substitution rates (10-20%) were underperforming in terms of plant growth and color compared to pure commercial peat during the first experiment, whereas better performances were obtained by the nitrogen-fertilized mixed substrates in the second experiment, at least for one variety. We identified a total of 12 and 16 aroma compounds of basil (mainly terpenes) in the two experiments. Partial replacement of peat did not affect basil volatile organic compounds content and composition, whereas N fertilization overall decreased the concentration of these compounds. CONCLUSION: Our results support a moderate use of charred or composted materials as peat surrogates. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Compostagem , Ocimum basilicum , Óleos Voláteis , Ocimum basilicum/química , Óleos Voláteis/química , Solo , Nitrogênio
4.
Microsc Res Tech ; 87(3): 411-423, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37877737

RESUMO

This paper reports on the findings from a study that aimed to identify and characterize the constituents of Ocimum basilicum extract using gas chromatography-mass spectrometry (GC-MS) analysis, as well as assess the physicochemical properties and stability of nanoemulsions formulated with O. basilicum extract. The GC-MS analysis revealed that the O. basilicum extract contained 22 components, with Caryophyllene and Naringenin identified as the primary active constituents. The nanoemulsion formulation demonstrated excellent potential for use in the biomedical field, with a small and uniform particle size distribution, a negative zeta potential, and high encapsulation efficiency for the O. basilicum extract. The nanoemulsions exhibited spherical morphology and remained physically stable for up to 6 months. In vitro release studies indicated sustained release of the extract from the nanoemulsion formulation compared to the free extract solution. Furthermore, the developed nanoformulation exhibited enhanced anticancer properties against K562 cells while demonstrating low toxicity in normal cells (HEK293). The O. basilicum extract demonstrated antimicrobial activity against Pseudomonas aeruginosa, Candida albicans, and Staphylococcus epidermidis, with a potential synergistic effect observed when combined with the nanoemulsion. These findings contribute to the understanding of the constituents and potential applications of O. basilicum extract and its nanoemulsion formulation in various fields, including healthcare and pharmaceutical industries. Further optimization and research are necessary to maximize the efficacy and antimicrobial activity of the extract and its nanoformulation. RESEARCH HIGHLIGHTS: This study characterized the constituents of O. basilicum extract and assessed the physicochemical properties and stability of its nanoemulsion formulation. The O. basilicum extract contained 22 components, with Caryophyllene and Naringenin identified as the primary active constituents. The nanoemulsion formulation demonstrated excellent potential for biomedical applications, with sustained release of the extract, low toxicity, and enhanced anticancer and antimicrobial properties. The findings contribute to the understanding of the potential applications of O. basilicum extract and its nanoemulsion formulation in healthcare and pharmaceutical industries, highlighting the need for further optimization and research.


Assuntos
Anti-Infecciosos , Ocimum basilicum , Óleos Voláteis , Sesquiterpenos Policíclicos , Humanos , Ocimum basilicum/química , Preparações de Ação Retardada , Células HEK293 , Microfluídica , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química
5.
Food Chem ; 440: 137825, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159321

RESUMO

The juice exudation of aquatic products oozes out during storage can influence storage quality. Herein, a novel basil essential oil liposome unidirectional water-conducting sustained-release preservation pads (BEOL/UCSP) were prepared with nylon mesh as water-conducting layer, basil essential oil liposome (BEOL) as sustained-release preservation layer, and diatomite and absorbent-cotton as water-absorbing layer. EL/UCSP, ß-CL/UCSP, and BEO/UCSP were prepared after BEOL was replaced by eugenol liposome, ß-caryophyllene liposome, and BEO. BEOL are microspheres with bilayer structure, had good storage stability, centrifugal stability, thermal stability, embedding capacity, sustained-release, and oxidation resistance, and the main components of preservatives had a synergistic effect on antibacterial properties. The pads without preservative can initially slow down quality deterioration. BEOL/UCSP can directionally absorb exudate and realize long-term sustained-release of preservative, has excellent antibacterial and antioxidant effect, and extended shelf life of Lateolabrax japonicus fillets from 6.0 days to 12.8 days. The BEOL/UCSP can provide technical theoretical support for preservation materials.


Assuntos
Ocimum basilicum , Óleos Voláteis , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Conservação de Alimentos , Ocimum basilicum/química , Lipossomos , Preparações de Ação Retardada , Peixes , Antibacterianos
6.
BMC Complement Med Ther ; 23(1): 390, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898811

RESUMO

BACKGROUND: Ocimum americanum L. (O. americanum) and Ocimum basilicum L. (O. basilicum) are highly valued aromatic medicinal plants. Their leaves are widely used as spices in traditional cuisine. Their essential oils (EOs) are extensively used in food, cosmetic, and pharmaceutical industries. This study aimed to investigate the main chemical profiles of O. americanum and O. basilicum leaf EOs and assess their effects on antibacterial, antioxidant, and larvicidal properties. METHODS: EOs were extracted from the leaves of O. basilicum and O. americanum using steam distillation in a Clevenger-type apparatus. The chemical constituents of the EOs were analyzed using gas chromatography-mass spectrometry. 2,2-Diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and metal-chelating techniques were used to assess the free-radical scavenging capability of the oils. The extracted oils were also tested for their antibacterial activities via a disk-diffusion test and the broth microdilution method. Furthermore, the mosquito larvicidal (Aedes aegypti) activity was tested using standard protocols. RESULTS: Camphor (33.869%), limonene (7.215%), longifolene (6.727%), caryophyllene (5.500%), and isoledene (5.472%) were the major compounds in O. americanum leaf EO. The EO yield was 0.4%, and citral (19.557%), estragole (18.582%) camphor (9.224%) and caryophyllene (3.009%) were the major compounds found among the 37 chemical constituents identified in O. basilicum oil. O. basilicum exhibited a more potent antioxidant activity in DPPH, FRAP, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid tests than O. americanum. The zones of inhibition and minimum inhibitory concentration of the oils in the microdilution and disk diffusion methods were 8.00 ± 0.19 mm to 26.43 ± 2.19 mm and 3.12-100 µg/mL, respectively. At 400 ppm, O. basilicum and O. americanum EOs demonstrated larvicidal activity, with mortality ratios of 73.60% ± 0.89% and 78.00% ± 1.00%, respectively. Furthermore, after 30 min of exposure to O. americanum and O. basilicum EOs, the larval death rates were 73.60% ± 0.89% and 78.00% ± 1.00%, respectively. CONCLUSIONS: The findings revealed that the EOs extracted from the leaves of O. basilicum and O. americanum exhibited reasonable antioxidant, antibacterial, and mosquito larvicidal potentials, and can be used as alternative medicine for the treatment of human health and larvicidal mosquito control.


Assuntos
Anti-Infecciosos , Ocimum basilicum , Ocimum , Óleos Voláteis , Humanos , Antioxidantes/química , Ocimum basilicum/química , Cânfora/análise , Ocimum/química , Anti-Infecciosos/química , Óleos Voláteis/química , Antibacterianos/farmacologia , Antibacterianos/análise , Folhas de Planta/química
7.
Molecules ; 28(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894484

RESUMO

Neurodegenerative diseases, such as Alzheimer's and Parkinson's, pose a significant global health challenge, emphasizing the need for novel neuroprotective agents. Basil (Ocimum spp.) has been recognized for its therapeutic potential, and numerous studies have reported neuroprotective effects. In this manuscript, we present a computational protocol to extricate the underlying mechanism of action of basil compounds in neuroprotective effects. Molecular docking-based investigation of the chemical interactions between selected bioactive compounds from basil and key neuroprotective targets, including AChE, GSK3ß, γ-secretase, and sirtuin2. Our results demonstrate that basil compound myricerone caffeoyl ester possesses a high affinity of -10.01 and -8.85 kcal/mol against GSK3ß and γ-secretase, respectively, indicating their potential in modulating various neurobiological processes. Additionally, molecular dynamics simulations were performed to explore the protein-ligand complexes' stability and to analyze the bound basil compounds' dynamic behavior. This comprehensive computational investigation enlightens the putative mechanistic basis for the neuroprotective effects of basil compounds, providing a rationale for their therapeutic use in neurodegenerative disorders after further experimental validation.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Ocimum basilicum , Ocimum basilicum/química , Glicogênio Sintase Quinase 3 beta , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Secretases da Proteína Precursora do Amiloide/metabolismo , Simulação de Acoplamento Molecular , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo
8.
Int J Biol Macromol ; 253(Pt 6): 127342, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37838133

RESUMO

The effect of zinc oxide nanoparticles (ZnONPs) on various properties of basil seed mucilage (a heteropolysaccharide)-polyvinyl alcohol (BSM-PVA) films was investigated. Increasing concentration of ZnONPs in BSM-PVA films reduced moisture content (from 24.73 to 17.09 %), water solubility (from 36.36 to 27.65 %), water vapor permeability (from 4.66 × 10-7 to 2.55 × 10-7 g·m/m2·Pa·h), oxygen permeability (from 2.96 to 2.13 cm3 µm/m2 d kPa), and elongation at break (from 40.34 to 29.44 %), and increased ultimate tensile strength (from 16.81 to 21.48 MPa). Color and light transmission were affected by ZnONPs concentrations. The lack of formation of new peaks, along with the displacement of peaks, indicated the formation of hydrogen bonds between ZnONPs and the film matrix. Dynamic mechanical-thermal analysis showed that storage modulus and glass transition temperature increased with the concentration of ZnONPs. Scanning electron microscopy images illustrated that the addition of ZnONPs improved film integrity. X-ray diffraction pattern showed that the crystal shape of nanoparticles was preserved in the film matrix. Films containing ZnONPs showed good antibacterial activity against Staphylococcus aureus (reductions ≥ 3 log CFU/cm2) and Escherichia coli (reductions ≥ 4 log CFU/cm2). Films containing ZnONPs also showed a suitable antifungal activity during the storage of wheat bread.


Assuntos
Nanopartículas , Ocimum basilicum , Óxido de Zinco , Álcool de Polivinil/química , Ocimum basilicum/química , Óxido de Zinco/química , Polissacarídeos/análise , Nanopartículas/química , Biopolímeros/análise , Antibacterianos/química , Sementes/química
9.
Biotechnol Appl Biochem ; 70(6): 2038-2051, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635658

RESUMO

The interest in bioactives especially from botanicals to treat vancomycin-resistant enterococcal (VRE) infections is increased. Many species of Ocimum have a long history in folk medicinal and food industries. Nevertheless, their bioactive compounds remain unexplored. This study is aimed to assess the antimicrobial and antioxidant activity of basil leaf extract prepared using ethanol, methanol, and water. The ethanol and methanol extract have all the phytochemicals (alkaloids, flavonoids, phenolic compounds, tannins, saponins, quinones, carbohydrates, and proteins) except steroids and terpenoids. In addition to steroids and terpenoids, tannin was also absent in the aqueous extract. Total phenolic and flavonoid content was high in ethanol and followed by methanol and aqueous extract. Similarly, ethanol and methanol extract showed strong antimicrobial activity against VRE and MTCC strains at a concentration of 20 mg/mL than aqueous extract. Among the 10 indicators, Staphylococcus aureus is highly susceptible to ethanol extract at a concentration of 8 mg/mL and followed by other MTCC strains. Vancomycin-resistant enterococci pathogens were inhibited at the minimum inhibitory concentration of 14, 16, and 20 mg/mL of ethanol, methanol, and aqueous extract. Further, on the basis of determining the absorbing material (nucleic acid and protein) at 260 nm and scanning electron microscopic, it was confirmed that the loss of cell membrane integrity and cell membrane damage were the effective mechanisms of plant extract antimicrobial activity. All three solvents have shown remarkable antioxidant activity. Gas chromatography-mass spectrometry analysis of basil leaves ethanol extract identified 19 compounds with various therapeutic and food applications.


Assuntos
Anti-Infecciosos , Ocimum basilicum , Antioxidantes/farmacologia , Antioxidantes/química , Ocimum basilicum/química , Metanol , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Etanol/química , Água , Fenóis , Terpenos , Esteroides , Folhas de Planta/química
10.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511630

RESUMO

Nanocellulose (NC) is a valuable material in tissue engineering, wound dressing, and drug delivery, but its lack of antimicrobial activity is a major drawback for these applications. In this work, basil ethanolic extract (BE) and basil seed mucilage (BSM) were used to endow nanocellulose with antibacterial activity. NC/BE and NC/BE/BSM sponges were obtained from nanocellulose suspensions and different amounts of BE and BSM after freeze-drying. Regardless of the BE or BSM content, the sponges started to decompose at a lower temperature due to the presence of highly volatile active compounds in BE. A SEM investigation revealed an opened-cell structure and nanofibrillar morphology for all the sponges, while highly impregnated nanofibers were observed by SEM in NC/BE sponges with higher amounts of BE. A quantitative evaluation of the porous morphology by microcomputer tomography showed that the open porosity of the sponges varied between 70% and 82%, being lower in the sponges with higher BE/BSM content due to the impregnation of cellulose nanofibers with BE/BSM, which led to smaller pores. The addition of BE increased the specific compression strength of the NC/BE sponges, with a higher amount of BE having a stronger effect. A slight inhibition of S. aureus growth was observed in the NC/BE sponges with a higher amount of BE, and no effect was observed in the unmodified NC. In addition, the NC/BE sponge with the highest amount of BE and the best antibacterial effect in the series showed no cytotoxic effect and did not interfere with the normal development of the L929 cell line, similar to the unmodified NC. This work uses a simple, straightforward method to obtain highly porous nanocellulose structures containing antibacterial basil extract for use in biomedical applications.


Assuntos
Ocimum basilicum , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Ocimum basilicum/química , Extratos Vegetais/farmacologia
11.
Photochem Photobiol Sci ; 22(9): 2219-2230, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37310640

RESUMO

UV-A- or UV-B-enriched growth light was given to basil plants at non-stress-inducing intensities. UV-A-enriched growth light gave rise to a sharp rise in the expression of PAL and CHS genes in leaves, an effect that rapidly declined after 1-2 days of exposure. On the other hand, leaves of plants grown in UV-B-enriched light had a more stable and long-lasting increase in the expression of these genes and also showed a stronger increase in leaf epidermal flavonol content. UV supplementation of growth light also led to shorter more compact plants with a stronger UV effect the younger the tissue. The effect was more prominent in plants grown under UV-B-enriched light than in those grown under UV-A. Parameters particularly affected were internode lengths, petiole lengths and stem stiffness. In fact, the bending angle of the 2nd internode was found to increase as much as 67% and 162% for plants grown in the UV-A- and UV-B-enriched treatments, respectively. The decreased stem stiffness was probably caused by both an observed smaller internode diameter and a lower specific stem weight, as well as a possible decline in lignin biosynthesis due to competition for precursors by the increased flavonoid biosynthesis. Overall, at the intensities used, UV-B wavelengths are stronger regulators of morphology, gene expression and flavonoid biosynthesis than UV-A wavelengths.


Assuntos
Ocimum basilicum , Ocimum basilicum/genética , Ocimum basilicum/química , Raios Ultravioleta , Folhas de Planta/metabolismo , Flavonoides/metabolismo
12.
Biomed Res Int ; 2023: 9337763, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124934

RESUMO

Morus nigra (M) and Ocimum basilicum (O) mixture (MO2) extract was extracted using hexane (MO2H), chloroform (MO2C), ethyl acetate (MO2E), and methanol (MO2M) in a Soxhlet apparatus. The cytotoxicity was evaluated using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The IC50 values of the MO2C-treated cancer cells were 11.31 µg/mL (MDA-MB-231), 15.45 µg/mL (MCF-7), 18.9 µg/mL (HepG2), 26.33 µg/mL (Huh-7), 30.17 µg/mL (LoVo), and 36.76 µg/mL (HCT116). MO2C-treated cells showed cellular and nuclear morphological alterations like chromatin condensation and formation of apoptotic bodies as observed using light and fluorescent microscopy. The antioxidant and anti-inflammatory properties were investigated in vitro using 2,2'-diphenyl-1-picrylhydrazyl (DPPH) and egg albumin denaturation assays. It was evident that the MO2M extract exhibited the highest antioxidant activity (18.13%), followed by the MO2E extract (12.25%), MO2C extract (9.380%), and MO2H extract (6.31%). The highest inhibition percentage of albumin denaturation was observed in MO2H (28.54%), followed by MO2M (4.32%) at 0.2 and 0.1 mg/mL concentrations, respectively. The compounds identified using gas chromatography-mass spectrometry (GC-MS) analysis for MO2C extract were α-trans-bergamotene, germacrene D, selin-4,7(11)-diene, 2 tridecen-1-ol, and 2-decen-1-ol. The present study reveals that MO2C has promising anticancer activity and may serve as a potent polyherbal extract in cancer treatment.


Assuntos
Morus , Neoplasias , Ocimum basilicum , Ocimum basilicum/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Linhagem Celular Tumoral , Antioxidantes/farmacologia , Antioxidantes/química
13.
Genes (Basel) ; 14(5)2023 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-37239315

RESUMO

Lamiaceae is one of the largest botanical families, encompassing over 6000 species that include a variety of aromatic and medicinal spices. The current study is focused on three plants within this botanical family: basil (Ocimum basilicum L.), thyme (Thymus vulgaris L.), and summer savory (Satureja hortensis L.). These three species contain primary and secondary metabolites such as phenolic and flavonoid compounds, fatty acids, antioxidants, and essential oils and have traditionally been used for flavoring, food preservation, and medicinal purposes. The goal of this study is to provide an overview of the nutraceutical, therapeutic, antioxidant, and antibacterial key features of these three aromatics to explore new breeding challenges and opportunities for varietal development. In this context, a literature search has been performed to describe the phytochemical profile of both primary and secondary metabolites and their pharmacological uses, as well as to further explore accession availability in the medicine industry and also to emphasize their bioactive roles in plant ecology and biotic and abiotic stress adaptability. The aim of this review is to explore future perspectives on the development of new, highly valuable basil, summer savory, and thyme cultivars. The findings of the current review emphasize the importance of identifying the key compounds and genes involved in stress resistance that can also provide valuable insights for further improvement of these important medicinal plants.


Assuntos
Lamiaceae , Ocimum basilicum , Óleos Voláteis , Plantas Medicinais , Thymus (Planta) , Humanos , Melhoramento Vegetal , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Ocimum basilicum/química , Estresse Fisiológico
14.
Int J Biol Macromol ; 240: 124298, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059284

RESUMO

This study attempted to determine the best point of basil seed oxidation by applying response surface methodology (RSM) with 3 factors of temperature (35-45 °C), pH (3-7) as well as time (3-7 h), at 3 levels. The produced dialdehyde basil seed gum (DBSG) was collected and its physicochemical properties were determined. Fitting of quadratic, linear polynomial equations was subsequently done by considering the insignificant lack of fit, as well as highly considerable R2, in order to probe the probable relationship existing between these considered variables as well as the obtained responses. So the considered optimal related test conditions, which included pH = 3, T = 45 °C as well as Time = 3 h, were specified to produce the highest percentage of aldehyde (DBSG32), optimal (DBSG34) and the (DBSG74) samples with the highest viscosity. The results obtained by FTIR and aldehyde content determination provided the indication that dialdehyde groups were formed in a way that was in equilibrium with the considered the hemiacetal form which was dominant. Furthermore, AFM investigation related to the considered DBSG34 sample displayed over-oxidation as well as depolymerization; this might be due to the enhanced hydrophobic qualities, as well as the decreased viscosity. While the DBSG34 sample had the most dialdehyde factor group with a particular tendency for the combination having the proteins' amino group, DBSG32 and DBSG74 samples could be desirable for industrial uses owing to no overoxidation.


Assuntos
Ocimum basilicum , Ocimum basilicum/química , Ligação Proteica , Sementes/química , Aldeídos/química
15.
Molecules ; 28(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37110539

RESUMO

The antimicrobial and antioxidant effects of plant extracts are well known, but their use is limited because they affect the physicochemical and sensory characteristics of products. Encapsulation presents an option to limit or prevent these changes. The paper presents the composition of individual polyphenols (HPLC-DAD-ESI-MS) from basil (Ocimum basilicum L.) extracts (BE), and their antioxidant activity and inhibitory effects against strains of Staphylococcus aureus, Geobacillus stearothermophilus, Bacillus cereus, Candida albicans, Enterococcus faecalis, Escherichia coli, and Salmonella Abony. The BE was encapsulated in sodium alginate (Alg) using the drop technique. The encapsulation efficiency of microencapsulated basil extract (MBE) was 78.59 ± 0.01%. SEM and FTIR analyses demonstrated the morphological aspect of the microcapsules and the existence of weak physical interactions between the components. Sensory, physicochemical and textural properties of MBE-fortified cream cheese were evaluated over a 28-day storage time at 4 °C. In the optimal concentration range of 0.6-0.9% (w/w) MBE, we determined the inhibition of the post-fermentation process and the improvement in the degree of water retention. This led to the improvement of the textural parameters of the cream cheese, contributing to the extension of the shelf life of the product by 7 days.


Assuntos
Anti-Infecciosos , Queijo , Ocimum basilicum , Queijo/análise , Anti-Infecciosos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ocimum basilicum/química , Antioxidantes/farmacologia , Antioxidantes/química
16.
Molecules ; 28(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36677672

RESUMO

This study aimed to determine the chemical composition of the essential oils (EOs) of Ocimum basilicum L., as well as to evaluate the antibacterial, antidiabetic, dermatoprotective, and anti-inflammatory properties, and the EOs and aqueous extracts of O. basilicum. The antibacterial activity was evaluated against bacterial strains, Gram-positive and Gram-negative, using the well diffusion and microdilution methods, whereas the antidiabetic activity was assessed in vitro using two enzymes involved in carbohydrate digestion, α-amylase and α-glucosidase. On the other hand, the dermatoprotective and anti-inflammatory activities were studied by testing tyrosinase and lipoxygenase inhibition activity, respectively. The results showed that the chemical composition of O. basilicum EO (OBEO) is dominated by methyl chavicol (86%) and trans-anethol (8%). OBEO exhibited significant antibacterial effects against Gram-negative and Gram-positive strains, demonstrated by considerable diameters of the inhibition zones and lower MIC and MBC values. In addition, OBEO exhibited significant inhibition of α-amylase (IC50 = 50.51 ± 0.32 µg/mL) and α-glucosidase (IC50 = 39.84 ± 1.2 µg/mL). Concerning the anti-inflammatory activity, OBEO significantly inhibited lipoxygenase activity (IC50 = 18.28 ± 0.03 µg/mL) compared to the aqueous extract (IC50 = 24.8 ± 0.01 µg/mL). Moreover, tyrosinase was considerably inhibited by OBEO (IC50 = 68.58 ± 0.03 µg/mL) compared to the aqueous extract (IC50 = 118.37 ± 0.05 µg/mL). The toxicological investigations revealed the safety of O. basilicum in acute and chronic toxicity. The finding of in silico analysis showed that methyl chavicol and trans-anethole (main compounds of OBEO) validate the pharmacokinetics of these compounds and decipher some antibacterial targets.


Assuntos
Ocimum basilicum , Óleos Voláteis , Ocimum basilicum/química , Monofenol Mono-Oxigenase , alfa-Glucosidases , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Lipoxigenases
17.
PLoS One ; 18(1): e0280037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36649263

RESUMO

To counterbalance the growing human population and its increasing demands from the ecosystem, and the impacts on it, new strategies are needed. Use of organic fertilizers boosted the agricultural production, but further increased the ecological burden posed by this indispensable activity. One possible solution to this conundrum is the development and application of more environmentally neutral biofertilizers. The aim of this study was to compare the effectiveness of two doses of Hermetia illucens frass (HI frass) with the commercial cattle manure in the cultivation of basil under drought. Soil without the addition of any organic fertilizer was used as a baseline control substrate for basil cultivation. Plants were grown with cattle manure (10 g/L of the pot volume) or HI frass at two doses (10 and 12.5 g/L). The health and physiological condition of plants were assessed based on the photosynthetic activity and the efficiency of photosystem II (chlorophyll fluorescence). Gas exchange between soil and the atmosphere were also assessed to verify the effect of fertilizer on soil condition. In addition, the mineral profile of basil and its antioxidant activity were assessed, along with the determination of the main polyphenolic compounds content. Biofertilizers improved the fresh mass yield and physiological condition of plants, both under optimal watering and drought, in comparison with the non-fertilized controls. Use of cattle manure in both water regimes resulted in a comparably lower yield and a stronger physiological response to drought. As a result, using HI frass is a superior strategy to boost output and reduce the effects of drought on basil production.


Assuntos
Dípteros , Ocimum basilicum , Humanos , Animais , Bovinos , Ocimum basilicum/química , Secas , Ecossistema , Fertilizantes , Esterco , Solo/química , Valor Nutritivo
18.
Curr Radiopharm ; 16(2): 140-150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36627786

RESUMO

BACKGROUND: In recent years, there has been a significant increase in studies investigating the potential use of plant-origin products in the treatment and diagnosis of different types of cancer. METHODS: In this study, Estragole (EST) was isolated from basil leaves via ethanolic extraction using an 80% ethanol concentration. The isolation process was performed using the High Performance Liquid Chromatography (HPLC) method. The EST isolated from the basil plant was radiolabeled with 131I using the iodogen method. Quality control studies of the radiolabeled EST (131IEST) were carried out by using Thin Layer Radio Chromatography (TLRC). Next, in vitro cell, culture studies were done to investigate the bio-affinity of plant-originated EST labeled with 131I on human medulloblastoma (DAOY) and human glioblastoma-astrocytoma (U-87 MG) cell lines. Finally, the cytotoxicity of EST was determined, and cell uptake of 131I-EST was investigated on cancer cell lines by incorporation studies. RESULTS: As a result of these studies, it has been shown that 131I-EST has a significant uptake on the brain cells. CONCLUSION: This result is very satisfying, and it has encouraged us to do in vivo studies for the molecule in the future.


Assuntos
Neoplasias Encefálicas , Ocimum basilicum , Humanos , Ocimum basilicum/química , Compostos Radiofarmacêuticos
19.
Food Chem ; 404(Pt A): 134545, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36252376

RESUMO

There is an increasing interest in the use of automation in plant production settings. Here, we employed a robotic platform to induce controlled mechanical stimuli (CMS) aiming to improve basil quality. Semi-targeted UHPLC-qToF-MS analysis of organic acids, amino acids, phenolic acids, and phenylpropanoids revealed changes in basil secondary metabolism under CMS, which appear to be associated with changes in taste, as revealed by different means of sensory evaluation (overall liking, check-all-that-apply, and just-about-right analysis). Further network analysis combining metabolomics and sensory data revealed novel links between plant metabolism and sensory quality. Amino acids and organic acids including maleic acid were negatively associated with basil quality, while increased levels of secondary metabolites, particularly linalool glucoside, were associated with improved basil taste. In summary, by combining metabolomics and sensory analysis we reveal the potential of automated CMS on crop production, while also providing new associations between plant metabolism and sensory quality.


Assuntos
Ocimum basilicum , Ocimum basilicum/química , Metabolômica , Produção Agrícola , Paladar , Metabolismo Secundário
20.
Pharm Biol ; 60(1): 1969-1980, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36226757

RESUMO

CONTEXT: Some studies reported the chemical content and antimicrobial properties of Ocimum basilicum L. (Lamiaceae), relevant to the ecological variations in some areas of Egypt and other countries, yet no research was conducted on the plant cultivated in the central delta region of Egypt. Also, no previous data reported on inhibition of ß-lactamases by O. basilicum. OBJECTIVE: To assess ß-lactamases inhibition by O. basilicum extracts and the individual constituents. MATERIALS AND METHODS: Dried aerial parts of O. basilicum were extracted by hydrodistillation for preparation of essential oil and by methanol for non-volatile constituents. Essential oil content and the methanol extract were analysed by GC-MS and UPLC-PDA-MS/MS, respectively. Methyl cinnamate was isolated and analysed by NMR. Broth microdilution method was used to investigate the antimicrobial against resistant clinical isolates of Escherichia coli identified by double disc synergy, combination disc tests and PCR. The most active oil content was further tested with a nitrocefin kit for ß-lactamase inhibition and investigated by docking. RESULTS: O. basilicum was found to contain methyl cinnamate as the major content of the essential oil. More interestingly, methyl cinnamate inhibited ESBL ß-lactamases of the type CTX-M. The in vitro IC50 using nitrocefin kit was 11.6 µg/mL vs. 8.1 µg/mL for clavulanic acid as a standard ß-lactamase inhibitor. DISCUSSION AND CONCLUSIONS: This is the first study to report the inhibitory activity of O. basilicum oil and methyl cinnamate against ß-lactamase-producing bacteria. The results indicate that methyl cinnamate could be a potential alternative for ß-lactamase inhibition.


Assuntos
Lamiaceae , Ocimum basilicum , Óleos Voláteis , Antibacterianos/farmacologia , Cefalosporinas , Cinamatos , Ácido Clavulânico , Egito , Metanol , Ocimum basilicum/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...